IP address (Internet Protocol address) is a unique address that certain electronic devices use in order to identify and communicate with each other on a computer network utilizing the Internet Protocol standard (IP)-in simpler terms, a computer address. Any participating network device-including routers, computers, time-servers, printers, Internet fax machines, and some telephones-can have their own unique address. An IP address can also be thought of as the equivalent of a street address or a phone number ( compare: VoIP (voice over (the) internet protocol)) for a computer or other network device on the Internet. Just as each street address and phone number uniquely identifies a building or telephone, an IP address can uniquely identify a specific computer or other network device on a network. An IP address differs from other contact information, however, because the linkage of a user's IP address to his/her name is not publicly available information. IP addresses can appear to be shared by multiple client devices either because they are part of a shared hosting web server environment or because a network address translator (NAT) or proxy server acts as an intermediary agent on behalf of its customers, in which case the real originating IP addresses might be hidden from the server receiving a request. A common practice is to have a NAT hide a large number of IP addresses, in the private address space defined by RFC 1918, an address block that cannot be routed on the public Internet. Only the "outside" interface(s) of the NAT need to have Internet-routable addresses. Most commonly, the NAT device maps TCP or UDP port numbers on the outside to individual private addresses on the inside. Just as there may be site-specific extensions on a telephone number, the port numbers are site-specific extensions to an IP address. IP addresses are managed and created by the Internet Assigned Numbers Authority (IANA). The IANA generally allocates super-blocks to Regional Internet Registries, who in turn allocate smaller blocks to Internet service providers and enterprises.
DNS Address:
On the Internet, the Domain Name System (DNS) associates various sorts of information with so-called domain names; most importantly, it serves as the "phone book" for the Internet: it translates human-readable computer hostnames, e.g. en.wikipedia.org, into the IP addresses that networking equipment needs for delivering information. It also stores other information such as the list of mail exchange servers that accept email for a given domain. In providing a worldwide keyword-based redirection service, the Domain Name System is an essential component of contemporary Internet use.
Uses :
The most basic use of DNS is to translate hostnames to IP addresses. It is in very simple terms like a phone book. For example, if you want to know the internet address of en.wikipedia.org, the Domain Name System can be used to tell you it is 66.230.200.100. DNS also has other important uses. Pre-eminently, DNS makes it possible to assign Internet destinations to the human organization or concern they represent, independently of the physical routing hierarchy represented by the numerical IP address. Because of this, hyperlinks and Internet contact information can remain the same, whatever the current IP routing arrangements may be, and can take a human-readable form (such as "wikipedia.org") which is rather easier to remember than an IP address (such as 66.230.200.100). People take advantage of this when they recite meaningful URLs and e-mail addresses without caring how the machine will actually locate them. The Domain Name System distributes the responsibility for assigning domain names and mapping them to IP networks by allowing an authoritative server for each domain to keep track of its own changes, avoiding the need for a central registrar to be continually consulted and
History :
The practice of using a name as a more human-legible abstraction of a machine's numerical address on the network predates even TCP/IP, and goes all the way to the ARPAnet era. Back then however, a different system was used, as DNS was only invented in 1983, shortly after TCP/IP was deployed. With the older system, each computer on the network retrieved a file called HOSTS.TXT from a computer at SRI (now SRI International). The HOSTS.TXT file mapped numerical addresses to names. A hosts file still exists on most modern operating systems, either by default or through configuration, and allows users to specify an IP address (eg. 192.0.34.166) to use for a hostname (eg. ) without checking DNS. As of 2006, the hosts file serves primarily for troubleshooting DNS errors or for mapping local addresses to more organic names. Systems based on a hosts file have inherent limitations, because of the obvious requirement that every time a given computer's address changed, every computer th at seeks to communicate with it would need an update to its hosts file. The growth of networking called for a more scalable system: one that recorded a change in a host's address in one place only. Other hosts would learn about the change dynamically through a notification system, thus completing a globally accessible network of all hosts' names and their associated IP Addresses. At the request of Jon Postel, Paul Mockapetris invented the Domain Name System in 1983 and wrote the first implementation. The original specifications appear in RFC 882 and 883. In 1987, the publication of RFC 1034 and RFC 1035 updated the DNS specification and made RFC 882 and RFC 883 obsolete. Several more-recent RFCs have proposed various extensions to the core DNS protocols. In 1984, four Berkeley students - Douglas Terry, Mark Painter, David Riggle and Songnian Zhou - wrote the first UNIX implementation, which was maintained by Ralph Campbell thereafter. In 1985, Kevin Dunlap of DEC significantly re-wrote the DNS implementation and renamed it BIND (Berkeley Internet Name Domain, previously: Berkeley Internet Name Daemon). Mike Karels, Phil Almquist and Paul Vixie have maintained BIND since then. BIND was ported to the Windows NT platform in the early 1990s. Due to BIND's long history of security issues and exploits, several alternative nameserver/resolver programs have been written and distributed in recent years. How DNS Work In The Theory : The domain name space consists of a tree of domain names. Each node or branch in the tree has one or more resource records, which hold information associated with the domain name. The tree sub-divides into zones. A zone consists of a collection of connected nodes authoritatively served by an authoritative DNS nameserver. (Note that a single nameserver can host several zones.) When a system administrator wants to let another administrator control a part of the domain name space within his or her zone of authority, he or she can delegate control to the other administrator. This splits a part of the old zone off into a new zone, which comes under the authority of the second administrator's nameservers. The old zone becomes no longer authoritative for what goes under the authority of the new zone. A resolver looks up the information associated with nodes. A resolver knows how to communicate with name servers by sending DNS requests, and heeding DNS responses. Resolving usually entails iterating through several name servers to find the needed information. Some resolvers function simplistically and can only communicate with a single name server. These simple resolvers rely on a recursing name server to perform the work of finding information for them.
IPv4:
Internet Protocol version 4 is the fourth iteration of the Internet Protocol (IP) and it is the first version of the protocol to be widely deployed. IPv4 is the dominant network layer protocol on the Internet and apart from IPv6 it is the only protocol used on the Internet. It is described in IETF RFC 791 (September 1981) which made obsolete RFC 760 (January 1980). The United States Department of Defense also standardized it as MIL-STD-1777. IPv4 is a data-oriented protocol to be used on a packet switched internetwork (e.g., Ethernet). It is a best effort protocol in that it does not guarantee delivery. It does not make any guarantees on the correctness of the data; It may result in duplicated packets and/or packets out-of-order. These aspects are addressed by an upper layer protocol (e.g., TCP, and partly by UDP).
???????